NMDA receptor composition differs among anatomically diverse malformations of cortical development.

نویسندگان

  • Adele Finardi
  • Fabrizio Gardoni
  • Stefania Bassanini
  • Giovanni Lasio
  • Massimo Cossu
  • Laura Tassi
  • Claudio Caccia
  • Franco Taroni
  • Giorgio LoRusso
  • Monica Di Luca
  • Giorgio Battaglia
چکیده

Altered excitatory synaptic activity is likely a key factor in the neuronal hyperexcitability of developmental cerebral malformations. Using a combined morphologic and molecular approach, we investigated the NMDA receptor and related protein composition in human epileptic patients affected by periventricular nodular heterotopia, subcortical band heterotopia, or focal cortical dysplasia. Our results indicate that expression levels of specific NMDA receptor subunits are altered in both cerebral heterotopia and cortical dysplasia. A selective increase in the NR2B subunit was present in all cortical dysplasia, whereas the expression level of NR2A and NR2B subunits was significantly downregulated in all patients with heterotopia. NR2B upregulation in cortical dysplasia was greater in the total homogenate than the postsynaptic membrane fraction, suggesting that mechanisms other than increased ionic influx through the postsynaptic membrane may sustain hyperexcitability in dysplastic neurons. In cerebral heterotopia, the NR2A and NR2B downregulation was accompanied by less evident reduction of the SAP97 and PSD-95 proteins of the MAGUK family, thus suggesting that NMDA impairment was associated with altered molecular structure of the postsynaptic membrane. Our results demonstrate that diverse human developmental malformations are associated with different alterations of the NMDA receptor, which may contribute to the genesis of epileptic phenomena.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Rat Model of Epileptic Spasms Based on Methylazoxymethanol-Induced Malformations of Cortical Development

Malformations of cortical development (MCDs) can cause medically intractable epilepsies and cognitive disabilities in children. We developed a new model of MCD-associated epileptic spasms by treating rats prenatally with methylazoxymethanol acetate (MAM) to induce cortical malformations and postnatally with N-methyl-d-aspartate (NMDA) to induce spasms. To produce cortical malformations to infan...

متن کامل

Prenatal exposure to the CB1 receptor agonist WIN 55,212-2 causes learning disruption associated with impaired cortical NMDA receptor function and emotional reactivity changes in rat offspring.

The aim of this study was to investigate whether prenatal exposure to the cannabinoid CB1 receptor agonist WIN 55,212-2 (WIN) at a daily dose devoid of overt signs of toxicity and/or gross malformations (0.5 mg/kg, gestation days 5-20), influences cortical glutamatergic neurotransmission, learning and emotional reactivity in rat offspring. Basal and K+-evoked extracellular glutamate levels were...

متن کامل

Basic mechanisms of MCD in animal models.

Epilepsy-associated glioneuronal malformations (malformations of cortical development [MCD]) include focal cortical dysplasias (FCD) and highly differentiated glioneuronal tumors, most frequently gangliogliomas. The neuropathological findings are variable but suggest aberrant proliferation, migration, and differentiation of neural precursor cells as essential pathogenetic elements. Recent advan...

متن کامل

Neonatal NMDA receptor blockade disturbs neuronal migration in rat somatosensory cortex in vivo.

Glutamate plays an important role in the control of neuronal migration in the developing cerebral cortex. The present study describes changes in the structure and function of the cerebral cortex after transient blockade of N-methyl-D-aspartate (NMDA) receptors during the late period of neuronal migration. Elvax slices containing the NMDA antagonist MK801 were placed over the somatosensory corte...

متن کامل

Control of cortical neuronal migration by glutamate and GABA

Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichoto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuropathology and experimental neurology

دوره 65 9  شماره 

صفحات  -

تاریخ انتشار 2006